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Abstract— In this work, we consider the state estimation
problem for a class of non-autonomous Persidskii systems. This
paper presents conditions on the existence and stability of a
nonlinear observer based on the invariant manifold approach.
The conditions are formulated using Linear Matrix Equalities
(LME) and Inequalities (LMI). Two interesting applications
of the result are presented: a reduced-order observer (e.g.,
an observer for unmeasured states) and regression, both in
linear and nonlinear settings. An example to demonstrate the
efficiency of results is provided.

I. INTRODUCTION

Designing observers is one of the central problems in
modern control theory and in dynamical systems analysis.
Once presented for linear cases [14], the problem of observer
design was vastly applied and studied for nonlinear cases
(e.g., [12] [8], [4], [18]) and became a popular research
subject in the field. The issue of order reduction for the
observer is a relevant sub-problem. The main idea is to
separate the dynamics of measured states from unmeasured
ones and not estimate unnecessary variables (known). This
procedure greatly simplifies the analysis, models, and real-
life applications. First stated in [14], such a problem
for the linear case had many continuations in nonlinear
analysis, starting from using linearization techniques [17]
and continuing with observer design based on solutions of
partial differential equations (PDEs).

The idea presented in this paper follows the so-called
invariant manifold approach presented in [10]. It was used
specifically to provide conditions on the existence of a
solution for the corresponding reduced-order observer for
a general class of nonlinear time-varying systems. The
solution lies in an invariant manifold described by a nonlinear
invertible function (chosen as a solution of the corresponding
PDE). Later, this method was extended in [11]. Recently,
such a technique was used primarily in adaptive control and
estimation, where it is named the inversion and invariance
approach [2]. Applying the invariant manifold method is
non-trivial. It might lead to many difficulties (related to the
requirement of the existence of an invertible solution of
a PDE), which makes its implementation complicated (the
choice of a solution may be case-dependent).

In this note, we study a rather general class of nonlinear
systems in the Persidskii form [15], including Lur’e systems,
widely used in mechanical and electrical engineering
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modeling. Persidskii systems are common in practice and can
be found, for example, in neural networks [7], [9], electrical
circuits [6], mechanical robotic systems [16], and bioreactors
[3]. The advantage of such a choice is that LMEs can replace
the conventional PDE of the invariant manifold method, and
LMIs provide system stability. This procedure emerges to be
more constructive in practice and easy to implement, as we
will demonstrate.

In addition, this paper shows that the presented result can
be applied not only to the reduced-order state observation
problem but also fits a conventional linear regression solution
and a nonlinear one, which shows a broader field of
implementation and problem solving for Persidskii systems.

The paper is structured as follows. Notation and
Problem statement are presented in Section II. The
main result on conditions of the observer existence and
convergence is provided in Section III. Some applications,
including reduced-order observers and parameter estimation
in regression analysis (both in linear and nonlinear settings),
are given in Section IV. A nonlinear example in section
VI demonstrates the efficiency of the presented work. A
conclusion with some remarks is given in VII.

II. PRELIMINARIES

A. Notation

• The set of real numbers is denoted by R, and we
write R+ := {𝑡 ∈ R | 𝑡 ≥ 0}. The spaces of real vectors
of dimension 𝑛 and real matrices of dimension 𝑛×𝑚

are denoted by R𝑛 and R𝑛×𝑚, respectively.
• For a Lebesgue measurable function 𝑢 :R+ →R𝑛, define

the norm ‖𝑢‖ [𝑡1 ,𝑡2) = ess sup𝑡 ∈[𝑡1 ,𝑡2) ‖𝑢(𝑡)‖ for [𝑡1, 𝑡2) ⊂
R+, where ‖ · ‖ refers to the Euclidian norm in R𝑛. We
denote by L𝑛

∞ the set of functions 𝑢 : R+ → R𝑛 such
that ‖𝑢‖∞ = ‖𝑢‖ [0,+∞) < +∞.

• Let 𝜆min (𝐴) and 𝜆max (𝐴) denote the minimal and
the maximal eigenvalues of a symmetric matrix 𝐴,
respectively. Denote by 𝐼𝑛 the 𝑛×𝑛 identity matrix.

B. Input excitation

Definition 1. A function 𝜙 : R+ → R𝑛 is persistently excited
(or 𝜙 is PE), if there exist 𝑇, 𝜇 > 0 such that for all 𝑡 ∈ R+,∫ 𝑡+𝑇

𝑡

𝜙(𝑠)𝜙> (𝑠)𝑑𝑠 > 𝜇𝐼𝑛,

where 𝜙> denotes the function R+ → R1×𝑛, 𝑡 ↦→ 𝜙(𝑡)>.



Definition 2. Two PE functions 𝜙 : R+ → R𝑛 , 𝜓 : R+ → R𝑚
are linearly independent, if there exists 𝑇 > 0 such that for
all 𝑡 ∈ R+, the following matrix functions:(∫ 𝑡+𝑇

𝑡

𝜙(𝑠)𝜙(𝑠)>𝑑𝑠
)−1∫ 𝑡+𝑇

𝑡

𝜙(𝑠)𝜓(𝑠)>𝑑𝑠 and(∫ 𝑡+𝑇

𝑡

𝜓(𝑠)𝜓(𝑠)>𝑑𝑠
)−1∫ 𝑡+𝑇

𝑡

𝜓(𝑠)𝜙> (𝑠)𝑑𝑠

are not constant.

C. Problem statement
Consider a time-varying nonlinear system in Persidskii

form:{
¤𝑥(𝑡) = 𝐴0 (𝑡)𝑥(𝑡) + 𝐴1 (𝑡) 𝑓 (𝐻 (𝑡)𝑥(𝑡)) +𝑄(𝑡)𝑢(𝑡), 𝑡 ∈ R+,
𝑦(𝑡) = 𝐷0 (𝑡)𝑥(𝑡) +𝐷1 (𝑡) 𝑓 (𝐻 (𝑡)𝑥(𝑡)) , (1)

where 𝑥 : R+ → R𝑛 is the state function and 𝑦 : R+ →
R𝑝 is the output function; 𝑢 : R+ → R𝑚 is an essentially
bounded external input function; 𝑓 : R𝑟 → R𝑘 is a nonlinear
continuous function, 𝐴0 (𝑡) ∈ R𝑛×𝑛, 𝐴1 (𝑡) ∈ R𝑛×𝑘 , 𝐻 (𝑡) ∈
R𝑟×𝑛, 𝑄(𝑡) ∈ R𝑛×𝑚, 𝐷0 (𝑡) ∈ R𝑝×𝑛, 𝐷1 (𝑡) ∈ R𝑝×𝑘 are known
time-varying matrices. We assume that the function 𝑓 allows
the forward existence and uniqueness of a solution of the
system (1).

Let us build an observer for system (1) of a form:

¤𝜔(𝑡) = 𝑆0 (𝑡)𝜔(𝑡) + 𝑆1 (𝑡) 𝑓 (𝐽 (𝑡)𝜔(𝑡)) +𝐵(𝑡)𝑦(𝑡) +𝑂 (𝑡)𝑢(𝑡), (2)

where 𝜔 : R+ → R𝑞 is the state function and 𝑆0 (𝑡) ∈ R𝑞×𝑞 ,
𝑆1 (𝑡) ∈ R𝑞×𝑘 , 𝐽 (𝑡) ∈ R𝑟×𝑞 , 𝐵(𝑡) ∈ R𝑞×𝑝 , 𝑂 (𝑡) ∈ R𝑞×𝑝 are
time-varying matrices to be chosen.

This paper aims to establish conditions for using (2)
as a (reduced-order) observer for (1). Conditions for the
existence of a static relationship between solutions of (1)
and (2) have to be established (what is estimated). Also,
convergence conditions must be set. Next, the goal is to
apply the proposed observer to different estimation problems:
reduced-order state observer design and parameter estimation
in linear and nonlinear settings.

III. MAIN RESULT

First, the conditions of existence of a static relationship
between solutions of the systems (1) and (2) should be
established. To this end, the invariant manifold method [11]
will be adapted to the present problem to obtain a simple
linear interconnection between the solutions of (1), (2).

A. Steady-state estimation

Proposition 1. Assume that there exist Π(𝑡) ∈ R𝑞×𝑛 and
Υ(𝑡) ∈ R𝑞×𝑞 such that Υ(𝑡)𝐷1 (𝑡) = 0, and also matrices
𝑆0 (𝑡), 𝑆1 (𝑡), 𝐵(𝑡), 𝑂 (𝑡), ∀𝑡 ∈ R+, that satisfy the following
linear equalities1:

𝐽 (Π+Υ𝐷0) = 𝐻, (3)

1Throughout the paper, we simplify the notation for matrices by writing,
for instance, Π in place of Π(𝑡) when the time-dependency was once
defined, unless the opposite is mentioned.

and

𝑆0 (Π+Υ𝐷0) +
(
𝐵− ¤Υ

)
𝐷0 − (Π+Υ𝐷0) 𝐴0 − ¤Π−Υ ¤𝐷0 = 0,

𝐵𝐷1 − (Π+Υ𝐷0) 𝐴1 + 𝑆1 = 0, (4)
(Π+Υ𝐷0)𝑄 =𝑂.

Then

𝜔(𝑡) = Π(𝑡)𝑥(𝑡) +Υ(𝑡)𝑦(𝑡), ∀𝑡 ∈ R+ (5)

for any 𝑥(0) ∈ R𝑞 and 𝜔(0) = Π(0)𝑥(0) +Υ(0)𝑦(0).
Proof. Let us check that 𝜔(𝑡) =Π(𝑡)𝑥(𝑡) +Υ(𝑡)𝑦(𝑡), ∀𝑡 ∈ R+,
is a solution of the system (1), (2). Taking the derivative of
(5) and using equations (1), (2), since Υ𝐷1 = 0, we have the
following equality:

𝑆0 (Π+Υ𝐷0)𝑥 + 𝑆1 𝑓 (𝐽 (Π𝑥 +Υ𝑦)) +𝐵 (𝐷0𝑥 +𝐷1 𝑓 (𝐻𝑥)) +𝑂𝑢

= (Π+Υ𝐷0) (𝐴0𝑥 + 𝐴1 𝑓 (𝐻𝑥) +𝑄𝑢) + ¤Π𝑥(𝑡) + ¤Υ𝑦

+Υ
( ¤𝐷0𝑥 + ¤𝐷1 𝑓 (𝐻𝑥)

)
.

Also ¤Υ𝐷1 = −Υ ¤𝐷1, so substituting (3) leads to the relation(
𝑆0 (Π+Υ𝐷0) + (𝐵− ¤Υ)𝐷0 − (Π+Υ𝐷0)𝐴0 − ¤Π−Υ ¤𝐷0

)
𝑥

= (𝐵𝐷1 − (Π+Υ𝐷0)𝐴1 − 𝑆1) 𝑓 (𝐻𝑥) + ((Π+Υ𝐷0)𝑄−𝑂) 𝑢,

which is satisfied thanks to (4). �

Since the observer (2) of the system (1) has the
same shape of nonlinearity, under suitable interconnections
among the matrices given in Proposition 1, the obtained
relation between solutions is linear, reducing the complexity
of analysis significantly and opening space for many
applications.

B. Observer convergence to estimate

In Proposition 1, only the existence of relation 𝜔(𝑡) =
Π(𝑡)𝑥(𝑡) +Υ(𝑡)𝑦(𝑡) is proven for all 𝑡 ∈ R+. Whether this
relation is attracting for (1), (2) or not should be established
in the convergence analysis.

Assumption 1. There exist Π and Υ such that Υ𝐷1 = 0 and
the equalities (3) and (4) are satisfied for (1), (2).

Consider the following dynamical system with a copy
dynamics of (2):

¤𝑧(𝑡) = 𝑆0 (𝑡)𝑧(𝑡) + 𝑆1 (𝑡) 𝑓 (𝐽 (𝑡)𝑧(𝑡)) +𝐵(𝑡)𝑦(𝑡) +𝑂 (𝑡)𝑢(𝑡),

Let us introduce the error 𝑒 :=𝜔− 𝑧 between two solutions
of (2), initiated for different initial conditions, with the same
inputs (𝑦 and 𝑢). Then we have the following dynamics:

¤𝑒(𝑡) = 𝑆0 (𝑡)𝑒(𝑡) + 𝑆1 (𝑡) ( 𝑓 (𝐽 (𝑡)𝜔(𝑡)) − 𝑓 (𝐽 (𝑡)𝑧(𝑡))) . (6)

Now we can state a theorem about the convergence of the
observer.

Theorem 1. Let Assumption 1 be satisfied. Assume there
exist 𝐹 (𝑡) ∈ R𝑞×𝑘 and 𝑊 (𝑡) =𝑊 (𝑡)> ∈ R𝑞×𝑞 such that

𝑒>𝐹 ( 𝑓 (𝐽𝜔) − 𝑓 (𝐽𝑧)) ≤ 𝑒>𝑊𝑒,



for all 𝜔, 𝑧 ∈ R𝑞 and 𝑒 = 𝜔− 𝑧, and that there exist 𝑃(𝑡) =
𝑃(𝑡)> ∈ R𝑞×𝑞 , Ξ(𝑡) = Ξ(𝑡)> ∈ R𝑞×𝑞 such that the LMIs

𝛼1𝐼𝑛 ≤ 𝑃,Ξ 𝑃 ≤ 𝛼2𝐼𝑛, 𝑃𝑆1 = 𝐹,

¤𝑃+ 𝑆>0 𝑃+𝑃𝑆0 +2𝑊 +Ξ < 0

have a solution for some 0 < 𝛼1 < 𝛼2 < +∞. Then, the system
(6) is globally asymptotically stable and (2) is globally
convergent.

Proof. Assumption 1 ensures the existence of an estimate,
so let us select a Lyapunov function candidate 𝑉 (𝑡, 𝑒(𝑡)) =
𝑒(𝑡)>𝑃(𝑡)𝑒(𝑡), where 𝑃(𝑡) is given in the conditions of the
theorem. Then its derivative for (6) takes the form:

¤𝑉 = 𝑒> (𝑆>0 𝑃+𝑃𝑆0 + ¤𝑃)𝑒 +2𝑒> (𝑡)𝑃𝑆1 ( 𝑓 (𝐽𝜔) − 𝑓 (𝐽𝑧))

≤ 𝑒>
(
𝑆>0 𝑃+𝑃𝑆0 + ¤𝑃+2𝑊 +Ξ

)
𝑒− 𝑒>Ξ𝑒,

where 𝐹 = 𝑃𝑆1 and 𝑊 is given in the formulation of
the theorem. According to the imposed conditions the top
expression is non-positive and:

‖𝑒(𝑡)‖ ≤

√︄
𝜆max (𝑃)
𝜆min (𝑃)

𝑒
−0.5 𝜆min (Ξ)

𝜆max (𝑃) 𝑡 ‖𝑒(0)‖

for all 𝑡 ≥ 0. �

The conditions presented in Theorem 1 are given for an
illustration, and any other conditions for convergence to zero
and stability of 𝑒 in (6) can be used.

IV. CONVENTIONAL OBSERVER APPLICATIONS

Let us demonstrate how the generic results presented in the
previous section can be used in several popular estimation
scenarios.

A. Linear reduced-order observer

The first application of the result presented in the previous
section, is a reduced-order observer for the linear case, where
𝑆1 = 0, 𝐷1 = 0, and all the other matrices are known and
constant in (1) (the time-invariance has been imposed to
simplify presentation and comparison). Then we have an
ordinary LTI system of the form:{

¤𝑥(𝑡) = 𝐴0𝑥(𝑡) +𝑄𝑢(𝑡), 𝑡 ∈ R+,
𝑦(𝑡) = 𝐷0𝑥(𝑡).

(7)

As in a classical problem of reduced-order observer
design, we can present our state 𝑥(𝑡) with new variables
𝑦(𝑡) ∈ R𝑝 and 𝑤(𝑡) ∈ R𝑛−𝑝 as follows:(

𝑦(𝑡)
𝑤(𝑡)

)
=

(
𝐷0
Π

)
𝑥(𝑡) (8)

where 𝑦(𝑡) represents a set of directly measured state
variables and 𝑤(𝑡) represents a set of unmeasured states,
correspondingly. The task is then to build an observer for 𝑤,
which will effectively reduce the dynamic order of (2) from
𝑛 to 𝑛− 𝑝. Therefore, consider the following LTI system (the
respective presentation of (2)):

¤𝜔(𝑡) = 𝑆0𝜔(𝑡) +𝐵𝑦(𝑡) +𝑂𝑢(𝑡), (9)

where 𝜔(𝑡) ∈ R𝑛−𝑝 is the observer state, and 𝑆0 ∈
R(𝑛−𝑝)×(𝑛−𝑝) , 𝐵 ∈ R(𝑛−𝑝)×𝑝 ,𝑂 ∈ R(𝑛−𝑝)×𝑚 are constant
matrices to be determined.

Then, Proposition 1 can be applied for the considered case.
If the following matrix equalities are verified:

𝑆0 (Π+Υ𝐷0) +𝐵𝐷0 − (Π+Υ𝐷0) 𝐴0 = 0, (10)
(Π+Υ𝐷0)𝑄 =𝑂,

then there exists a solution

𝜔(𝑡) = Π𝑥(𝑡) +Υ𝑦(𝑡), ∀𝑡 ∈ R+ (11)

for any 𝑥(0) ∈ R𝑞 and 𝜔(0) = Π𝑥(0) +Υ𝑦(0), connecting (7)
and (9). Applying Assumption 1 to (11), (7) and (9), we can
use Theorem 1 (we ask for the existence of a positive definite
symmetric matrix 𝑃 ∈R𝑝×𝑝 such that 𝑆>0 𝑃+𝑃𝑆0 < 0) to show
that (9) is globally asymptotically stable and it is, in fact, a
global asymptotic observer for 𝑤, making it a reduced-order
observer for (7). This conventional result is well-known, and
it was first presented in [14]. The purpose of considering
such a case is to demonstrate that the traditional result for
linear systems can be obtained through the idea presented in
Section III.

B. Linear regression

Another well-known and commonly used in practice
estimation problem is the parameter linear regression. The
application of our result is less intuitive in this setting than
previously. However, it fits the problem statement rather well.
In order to demonstrate it, let us consider a simple linear
regression equation:

𝑦(𝑡) = 𝐷0 (𝑡)𝑥, (12)

where 𝑦(𝑡) is a measured output, 𝐷0 (𝑡) is a regression matrix
and 𝑥 is the vector of unknown parameters to be estimated,
which in our case is a state-vector. To apply Proposition 1,
we consider 𝐴0 = 0, 𝐴1 = 0, 𝐷1 = 0, 𝑄 = 0,∀𝑡 ∈ R+ in (1)
and we represent (12) in the required form (2) with 𝑆1 = 0,
𝑂 = 0,∀𝑡 ∈ R+:

¤𝜔(𝑡) = 𝑆0 (𝑡)𝜔(𝑡) +𝐵(𝑡)𝑦(𝑡), (13)

Then, we can choose Π = 𝐼 as constant identity matrix, Υ =

0,∀𝑡 ∈ R+, leading to:

𝜔(𝑡) = 𝑥(𝑡), (14)

which means that the system (13) is an observer for 𝑥(𝑡).
Applying Proposition 1, we have equality:

𝑆0 = −𝐵𝐷0. (15)

Since we need to choose the matrices 𝑆0 and 𝐵, let us
assign 𝐵 := Γ𝐷>

0 , where Γ is a nonsingular matrix, and can
substantiate 𝑆0 = −Γ𝐷>

0 𝐷0. Substituting in (13), it results in
a conventional gradient estimator:

¤𝜔(𝑡) = Γ𝐷>
0 (𝑡) (𝑦(𝑡) −𝐷0 (𝑡)𝜔(𝑡)) . (16)

For asymptotic convergence of this observer we need a
standard additional assumption:



Assumption 2. The matrix 𝐷0 (𝑡) is PE, for ∀𝑡 ∈ R+ [5].

Remark 1. There exist some techniques to relax the PE
condition using different estimation algorithms, such as
DREM (see for example [1]). However, to demonstrate our
approach in this paper, we prefer to keep Assumption 2 for
the sake of brevity.

Let Assumption 1 and Assumption 2 be satisfied, then
applying Theorem 1 to (14), (12) and (13), we obtain the
convergence of the estimator to the state 𝑥. This is a well-
known result for parameter estimation in linear regression
(see for instance [13]). Despite the result not being novel, this
application demonstrates the wide range of applicability of
the approach presented in Section III to estimation problems.

V. NONLINEAR APPLICATIONS

Let us consider less investigated nonlinear scenario of
applications, presented above.

A. Nonlinear reduced-order observer

Consider (1) and (2) with constant matrices for simplicity,
and let 𝐷1 = 0. We have nonlinear system:{

¤𝑥(𝑡) = 𝐴0𝑥(𝑡) + 𝐴1 𝑓 (𝐻𝑥(𝑡)) +𝑄𝑢(𝑡), 𝑡 ∈ R+,
𝑦(𝑡) = 𝐷0𝑥(𝑡),

(17)

where 𝑥(𝑡) ∈ R𝑛 is a full state, 𝑦(𝑡) ∈ R𝑝 is measured part
of the state and 𝐴0, 𝐴1,𝑄,𝐻 are matrices of corresponding
dimensions. Our goal is to design a reduced-order observer
for (17) of a smaller dimension 𝑞 = 𝑛− 𝑝:

¤𝜔(𝑡) = 𝑆0𝜔(𝑡) + 𝑆1 𝑓 (𝐽𝜔(𝑡)) +𝐵𝑦(𝑡) +𝑂𝑢(𝑡), (18)

where 𝜔 ∈ R𝑞 , and constant matrices are of corresponding
dimension. All of them have to be defined using the presented
method. Proposition 1 gives us the conditions of existence
of a solution:

𝜔(𝑡) = Π𝑥(𝑡) +Υ𝑦(𝑡) = (Π+Υ𝐷0)𝑥(𝑡) = 𝑍𝑥(𝑡), (19)

where 𝑍 ∈ R𝑞×𝑛 is a constant rectangular matrix, connecting
solutions of initial system (17) and observer (18). Then,
equations (3) and (4) in our case are as follows:

𝐽𝑍 = 𝐻,

𝑆0𝑍 = 𝑍𝐴0 −𝐵𝐷0,

𝑆1 = 𝑍𝐴1,

𝑂 = 𝑍𝑄.

Having 𝑍 , the above equations can be solved with respect to
𝑆0, 𝑆1, 𝐵, 𝑂 and 𝐽. Theorem 1 can be directly applied with
a constant matrix 𝑃 in order to prove the convergence of the
observer (18) to a hyperplane given by (19). Since the order
of 𝜔 is lower than the one of 𝑥, we can say that (18) is an
asymptotical reduced-order observer.
Remark 2. The same result can be derived for time-varying
matrices, the difference will lay only in matrix equations
from Proposition 1 and in the form of 𝑆0 (𝑡) and 𝑆1 (𝑡).

The results on reduced-order observer design for nonlinear
systems given in [17] are local and based on linearization

analysis, while the general results presented in [11] cover the
considered case, but they are less constructive since require
a solution of PDE.

B. Nonlinear regression

Similarly to linear equation (12), we can consider the
following form of the system (1), where 𝐴0 = 0, 𝐴1 = 0,𝑄 = 0:

𝑦(𝑡) = 𝐷0 (𝑡)𝑥 +𝐷1 (𝑡) 𝑓 (𝐻 (𝑡)𝑥),

where 𝑦(𝑡) is measured output vector, 𝐷0 (𝑡) is a regression
matrix in linear part and 𝐷1 (𝑡), 𝐻 (𝑡) are regression matrices
in nonlinear part, 𝑥 is a vector of unknown parameters. As
in the linear case we have corresponding observer:

¤𝜔(𝑡) = 𝑆0 (𝑡)𝜔(𝑡) + 𝑆1 (𝑡) 𝑓 (𝐽 (𝑡)𝜔(𝑡)) +𝐵(𝑡)𝑦(𝑡), (20)

and we put Π = 𝐼,Υ = 0, so we are looking for the solution
in the form:

𝜔(𝑡) = 𝑥(𝑡).

Using Proposition 1 we obtain following equalities:

𝐽 = 𝐻,

𝑆0 +𝐵𝐷0 = 0,
𝑆1 +𝐵𝐷1 = 0.

Finally, substituting it to (20) with a nonsingular matrix Γ

of the appropriate dimension, we have:

¤𝜔(𝑡) = −𝐵(𝑡)𝐷0 (𝑡)𝜔(𝑡) −𝐵(𝑡)𝐷1 (𝑡) 𝑓 (𝐽 (𝑡)𝜔(𝑡)) +𝐵(𝑡)𝑦(𝑡).

Let 𝐵(𝑡) = Γ𝐷0 (𝑡)>, we have:

¤𝜔(𝑡) = −Γ𝐷>
0 𝐷0𝜔(𝑡) −Γ𝐷>

0 𝐷1 𝑓 (𝐽𝜔(𝑡)) +Γ𝐷>
0 𝑦(𝑡), (21)

Let Assumption 1 and 2 be satisfied, then according
to Theorem 1, (21) is an asymptotic observer for 𝑥(𝑡),
(provided that the imposed there restrictions on nonlinearity
are verified).

To the best of our knowledge, nonlinear regression for the
considered class of systems is a novel result.

Nevertheless, the current section demonstrates an
advantage of the generality of the approach considered in
Section III, which allows investigating a rather wide range
of both linear and nonlinear problems.

VI. EXAMPLES

Example 1. Let us consider a two mass-spring system with
nonlinear stiffness, the dynamics of which can be expressed
as follows:

¤𝑥1 = 𝑥2,
¤𝑥2 = −𝑘1 (𝑥1 − 𝑥3) − 𝑘2 (𝑥1 − 𝑥3)3 − 𝑎1 (𝑥2 − 𝑥4),
¤𝑥3 = 𝑥4,
¤𝑥4 = 𝑘1 (𝑥1 − 𝑥3) + 𝑘2 (𝑥1 − 𝑥3)3 + 𝑎1 (𝑥2 − 𝑥4) − 𝑘3𝑥3 − 𝑎2𝑥4 + sin(𝑡),
𝑦1 = 𝑥1,
𝑦2 = 𝑥2

(22)
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Fig. 1. Example 1.

Presenting the system in the form (1), we have:

𝐴0 =
©­­­«

0 1 0 0
−𝑘1 −𝑎1 𝑘1 𝑎1
0 0 0 1
𝑘1 𝑎1 −𝑘1 − 𝑘3 𝑎1 − 𝑎2

ª®®®¬ , 𝐴1 =
©­­­«

0
−𝑘2
0
𝑘2

ª®®®¬ ,
𝑓 (𝐻𝑥(𝑡)) = (𝐻𝑥(𝑡))3, 𝑄 =

(
0 0 0 1

)>
,

𝐷0 =

(
1 0 0 0
0 1 0 0

)
, 𝐻 =

(
1 0 −1 0

)
, 𝐷1 = 0,

where the states 𝑥1 and 𝑥2 correspond to the position and the
velocity of the first mass, assumed to be measured. The states
𝑥3 and 𝑥4 represent the position and the velocity of the second
mass, which we need to estimate. The signal 𝑢(𝑡) = sin(𝑡) is
the periodic force, applied to the second mass to excite the
system. Thus, the task is to build an observer of the form
(18), (19) for the states 𝑥3 and 𝑥4 using Proposition 1. We
have the following LMEs:

𝐽 (Π+Υ𝐷0) = 𝐻, (23)
𝑆0 (Π+Υ𝐷0) = (Π+Υ𝐷0)𝐴0 −𝐵𝐷0,

𝑆1 = (Π+Υ𝐷0)𝐴1,

𝑂 = (Π+Υ𝐷0)𝑄.

We can assign Π and Υ having full row rank (the matrix Π

should have left inverse with respect to the unmeasured state
components of (22), while Υ just describes the utilization of
the output variables) as, for example:

Π =

(
0 0 1 0
0 0 0 1,

)
Υ =

(
𝜐1 0
0 𝜐2

)
.

Therefore, we have 16 equations in total, with 16 unknowns.
Solving the equations for chosen in simulation values of
the coefficients (𝑘1 = 3, 𝑘2 = 3, 𝑘3 = 0.6, 𝑎1 = 0.6, 𝑎2 = 2), we
obtain:

𝑆0 =

(
0 1

−3.6 −2.6

)
, 𝑆1 =

(
0
3

)
,

𝐽 =
(
−1 0

)
, 𝑂 =

(
0
1

)
, 𝐵 =

(
0 −1

−0.6 0.6

)
, Υ=

(
−1 0
0 0

)
.

Then, we have the dynamics of 𝜔, which must satisfy the
LMIs in Theorem 1. From the given dynamics, we have a
condition:

𝑒>𝐹
(
𝑧3

1 −𝜔3
1

)
≤ (𝐹1𝑒1+𝐹2𝑒2)

(
−𝑒1 (𝑧2

1 +𝜔1𝑧1 +𝜔2
1)
)
≤ 𝑒>𝑊𝑒,

which has to be satisfied either globally, or at least locally
in 𝑧,𝜔 ∈ R2 Consider, for example the following matrices:

𝐹 =

(
0
1

)
, 𝑊 =

(
0 −0.5

−0.5 0

)
,

and the solution of LMIs given by the solver is:

𝑃 =

(
2.2 0
0 0.33

)
, Ξ =

(
0 0
0 0.8667

)
.

Finally, we build an observer for states 𝑥3 and 𝑥4 from the
expression 𝜔 = Π𝑥 +Υ𝐷0𝑥:

𝑥3 =
𝜔1 −𝜐1𝑥1

𝑝1
= 𝜔1 + 𝑥1,

𝑥4 =
𝜔2 −𝜐4𝑥2

𝑝4
= 𝜔2.

Figure 1 demonstrates the convergence of the observer for
unmeasured states, which successfully reduces the dimension
of the observation problem from 4 to 2, in the considered
case.

VII. CONCLUSION

The results presented in this paper simplify designing
(reduced-order) observers for a particular class of systems,
avoiding solutions of PDEs which arise in the conventional
invariant manifold methodology (see [2]). The resulting
solution is explicit and more constructive than existing results
on nonlinear observer design. We have shown two possible
applications of our approach: nonlinear reduced-order
observer and nonlinear regression. An example representing
a mechanical system demonstrates the applicability of our
result in this work.
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