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Abstract— The distinguishability between the modes of a
switched system is an essential concept, particularly for the
synthesis of observers. In this paper, we propose to use its
opposite, specifically to protect against cyber-physical attacks
that aim to obtain information about the system. More precisely,
we focus on synthesizing non-discerning control laws that
stabilize the switched system. We establish the conditions for the
existence of such a law and propose a procedure for its design.
The academic examples demonstrate the described application.

I. INTRODUCTION

Switched systems are a long-adopted and actively devel-
oping mathematical framework with a solid mathematical
background (see [1], [2]).

Linear Time-Invariant switched systems are also some-
times used for the description of Cyber-Physical Systems
(CPS), the cyber-security of which is a more recent subject,
brought by the rapid development of technology. Almost all
of the modern infrastructure and processes, which can be
described using switched (or hybrid) systems, contain a layer
of communications, which is proven to be corruptible and
accessible remotely by the adversary.

The first stage of most cyber-physical attacks is the so-
called confidentiality attack, which aims to get data about the
system by eavesdropping (gaining access to communications
and commands). In the case of switched systems, the problem
comes down to the identification of multiple subsystems and
modes, depending on the prior knowledge and access to the
system by the adversary, which can be challenging.

Despite the associated difficulties due to switching, many
mode detection methods (listed, for example, in a survey [3])
deal with the problem efficiently, mainly requiring access to
the input/output measurements of the system, with the con-
ditions on mode discernibility (or distinguishability) always
being a key aspect. To this end, this paper considers the
problem of restricting the ability of the attacker to decipher
the mode uniquely. However, the question arises: Can the
regular objective of the system still be satisfied for this case
(for instance, a stabilization of the state)? What conditions
must be imposed on the system for both objectives to align?

A. Related work

With the switching signal allowing a new axis of control-
lability, the problem of stabilizability changes significantly.
The subsystems that are not stabilizable by feedback control
can sometimes be stabilized by switching. A summary of
earlier results for stabilizability can be found in [4]. For
the case of autonomous switched systems, the problem of
stabilizability using a switching signal was considered in [5],

where new necessary and sufficient conditions based on the
set-theory approach were defined. In [6], the definition of
periodic stabilizability and the condition in relation to classic
stabilizability were extended. In [7], an algorithm using the
joint spectral radius to find the stabilizing switching signal
was provided. In [8], a new switched Lyapunov function was
introduced, based on the results of uncertain systems.

For the case of controlled switched systems, a combination
of feedback control and switching signal is used (forming a
stabilizing control policy). In [9], a periodic stabilizability
was defined, and conditions in relation to classic stabiliz-
ability were established. In [10], the existence of piece-wise
quadratic control-Lyapunov function and the existence of
a stationary exponentially stabilizing hybrid-control policy
was proven. In [11], necessary and sufficient conditions for
periodic stabilizability and computational tools for upper and
lower estimation were provided.

A new problem, introduced by switched systems, is mode
discernibility (or sometimes distinguishability [12]), i.e. the
ability to distinguish between two systems under different
switching signals and initiated from different initial condi-
tions, based on the output. Moreover, mode discernibility
remains the key aspect for the design and analysis of
switched systems; it is a necessary assumption for the state
estimation, switched system identification, stabilization, and
other problems. Multiple works demonstrated that this con-
cept is closely related to switched systems observability (see
[13],[14]), and is often referred to as a mode-observability
of the system [15]. The concept is also related to Input
Redundancy (IR) [16], if we consider the control and the
switching signal as inputs for the system.

Control design plays a crucial role in mode distinguisha-
bility. The so-called discernible control was introduced in
[15], and later extended for the case of external disturbances
in [17]. The so-called indistinguishable zone for a class of
initial vectors and input signals was defined in [18]. The
results were also applied to the cybersecurity scenario in
[19], where the goal of the CPS operator was to keep the
modes discernible at all times regarding possible corruption
of the input by the adversary, in [20] the stealthy Man-in-
the-Middle attack was later designed using the corrupted
discerning input.

To the best of the authors’ knowledge, the non-discerning
control appeared only a few times in the literature and was
never considered the design objective. For example, in [17]
and [21], the set of non-discerning control sequences was
defined for discrete-time linear systems, which led the state
to an indistinguishability zone, a scenario to be avoided.



Following the motivation and gaps presented above, the
paper offers the following contributions:

• novel conditions for the existence of a non-discerning
control for switched systems;

• conditions for stabilizability under the non-discerning
control;

• a constructive design procedure satisfying both objec-
tives.

B. Outline of the paper

The paper is structured as follows: Section II provides with
the notation, a system definition, stabilizability and mode
discernibility notions, which are used to express the main
result, presented in Section III. Section IV offers a detailed
control design, based on the results expressed in the previous
section, Section V demonstrates the application of the result
to a CPS under external observation; Section VI is dedicated
to academic examples, which validate the approach; and
Section VII concludes the paper with remarks and future
directions of the work.

II. PRELIMINARIES

A. Notation

• The set of real numbers is denoted by R, while the set
of natural numbers by N, the spaces of real vectors of
dimension nx and real matrices of dimension nx ×mx
are denoted by Rnx and Rnx×mx , respectively.

• ∥ ·∥ refers to the Euclidian norm in Rnx , while rank(·),
Im(·), dim(·) refer to a rank, image and dimension of a
matrix, correspondingly.

• Let λ (·) be the eigenvalue of the matrix, Ω(·) be the
spectrum of the matrix. Denote by Inx the nx × nx an
identity matrix, and with 0nx the nx × nx zero matrix.
Let the (·)† refer to the Moore–Penrose inverse of the
matrix.

B. System definition

Consider a switched linear time-invariant system in
discrete-time:{

x(k+1) = Aix(k)+Biu(k),
y(k+1) =Cix(k+1),

(1)

with x(k) ∈ Rnx as the state, u(k) ∈ Rnu as the input,
y(k) ∈ Rny as the measured output at time instant k. Denote
Q := 1, . . . ,q (q ∈ N), then Ai,Bi,Ci, i ∈ Q are matrices of
appropriate dimensions, and σ : N → Q, is the switching
signal. For the clarity of exposition, let the notation σ(k) and
σ be interchangeable for the rest of the paper. Define ut =
{u(k)}t−1

k=0 and σt = {σ(k)}t−1
k=0 as sets of inputs and modes

up to the time instant t, respectively; trajectories starting
from an initial state x0 as x(t,x0,ut ,σt) and y(t,x0,ut ,σt);
and πt as the sequence of the pairs of discrete inputs πt :=
(uk,σk)

t−1
k=0. The switching law is said to be n-periodic if

∀k ∈ N,σ(k+n) = σ(k).

Remark 1. Note that with the system defined as in (1), the
mode σ(k) = i is defined in a way that the output y(k+ 1)

is related to the dynamics of x(k+1), which differs from the
conventional definition where Ci corresponds to y(k). The
idea behind this is to simplify the notation for indices and
to highlight the use of the expected output y(k+ 1) for the
design of the input u(k).

Let F = {Ai}q
i=1 be the set of matrices of the switched

linear system (1). Then, for some n ∈ N, denote by Σn(F )
the set of length-n products of F

Σn(F ) =

{
n−1

∏
j=0

Ai j , i j ∈ {1, . . . ,q}

}
. (2)

C. Stabilizability

Definition 1. [11] The system (1) is called exponentially
stabilizable with parameters a ≥ 0 and c ∈ [0,1) if starting
from any initial state x0 ∈ Rnx , there exists a sequence πt
such that for all t ∈ N

∥x(t,x0,πt)∥ ≤ act∥x0∥. (3)

The system (1) is called periodic stabilizable if the switch-
ing law in πt is periodic.

D. Mode discernibility

Consider a copy of the system (1), denote its initial state,
state, switching signal, and output as x̄0, x̄(k), σ̄ , ȳ(k),
respectively. We propose to introduce the notion of non-
discerning control, which is defined as follows:

Definition 2. The control u(k) is called non-discerning
control for a system (1) if for all states x(k), x̄(k) there exist
σ , σ̄ ,(σ ̸= σ̄) such that the corresponding outputs are equal

∀x(k), x̄(k), ∃(σ , σ̄) : y(k+1,x(k),u(k),σ) =

ȳ(k+1, x̄(k),u(k), σ̄) . (4)

Let two modes (σ , σ̄) satisfying (4) be called controlled-
indiscernible.

Let us denote the switching sequence that leads to (3) as
σ∗

t . Then, the objective of the paper is to establish conditions
on a system (1) under which both (4) and (3) are satisfied.
Another objective is to provide with a constructive design
for πt =

(
uk,σ

∗
k

)t−1
k=0 when the conditions are satisfied.

III. MAIN RESULT

A. Existence of the non-discerning control

Proposition 1. There exists a non-discerning control for
the system (1), if and only if there exists at least one pair
(i, j) ∈ Q×Q, (i ̸= j) such that the following rank condition
is satisfied

rank
([

CiAi −C jA j Gi j
])

= rank(Gi j), (5)

where Gi j := (C jB j −CiBi).
Moreover, for any k ≥ 0 and ∀x(k), x̄(k) the control u(k)

can be defined as follows

u(k) = G†
i j (CiAix(k)−C jA j x̄(k)) . (6)



Let us denote with Q̄ ⊂ Q×Q the set of all pairs (i, j), i ̸=
j, such that (5) is satisfied.

Proof. The rank condition in Proposition 1 is obtained from
the resolvability of the equation

y(k+ 1)− ȳ(k+ 1) = CiAix(k)−C jA j x̄(k)−Gi ju(k). (7)

⇒ (if): For the sufficiency of the claim, it is enough to
demonstrate that if the rank condition (5) is satisfied, then
a solution for u(k) exists (for any x(k), x̄(k)) such that (7)
equals to 0.

Assume that the condition (5) is satisfied, and recall that
dim(Im(A)) = rk(A), it leads to

Im
([

CiAi −C jA j Gi j
])

= Im(Gi j) (8)

which leads to Im
([

CiAi −C jA j
])

⊆ Im(Gi j) which means
that for any x(k), x̄(k) there exists an input u(k) such that

y(k+1)− ȳ(k+1) =CiAix(k)−C jA j x̄(k)−Gi ju(k) = 0

with u(k) = G†
i j (CiAix(k)−C jA j x̄(k)).

⇐ (only if): For the necessity of the claim, we assume
that the equation (7) equals 0, and then demonstrate that the
equation is not solvable for u(k) (for any x(k), x̄(k)) only in
the case when the rank condition is not satisfied.

Let us assume the contrary, that there exists non-discerning
control for the system (1), and the condition (5) is not
satisfied, i.e.

rank
([

CiAi −C jA j Gi j
])

> rank(Gi j). (9)

We have

CiAix(k)−C jA j x̄(k) = Gi ju(k) (10)

Consider the case where u(k) ∈ ker(Gi j), then

CiAix(k) =C jA j x̄(k), (11)

which can only be true for any x(k), x̄(k) if
rank

([
CiAi C jA j

])
= 0, which contradicts (9) no matter

the rank of Gi j.
In order for (10) to be satisfied for any x(k), x̄(k), where

u(k) /∈ ker(Gi j) the following has to hold

Im(
[
CiAi C jA j

]
)⊆ Im(Gi j) (12)

rank(
[
CiAi C jA j

]
)≤ rank(Gi j) (13)

which leads to (5) and contradicts (9).

After getting the expression and conditions for the exis-
tence of non-discerning control, the question of the stabiliz-
ability of system (1) under ut can be addressed. It is evident
from Proposition 1 that the behavior of both states x(k) and
x̄(k) must be considered together.

B. Stabilizability of an augmented system
Let us define a system for the augmented state X :=(

x(k)⊤ x̄(k)⊤
)⊤ as follows

X(k+1) =
(

Ai 0
0 A j

)
X(k)+

(
Bi
B j

)
u(k), (14)

Y (k+1) =
(
Ci −C j

)
X(k+1). (15)

By design, two modes σ and σ̄ are controlled-indiscernible
for a switched system (1) if the output of the augmented
system (14)-(15) Y ≡ 0 for all k ≥ 0. Let the conditions of the
Proposition 1 be satisfied, then under non-discerning control
(6) we get an autonomous system with Y ≡ 0.

X(k+1) =

(
Ai +BiG

†
i jCiAi −BiG

†
i jC jA j

B jG
†
i jCiAi A j −B jG

†
i jC jA j

)
X(k) :=

Φi jX(k) (16)

for all (i, j) ∈ Q̄.

Remark 2. By construction, the augmented system has the
following property:

Φi j =

(
0nx×nx Inx×nx

Inx×nx 0nx×nx

)
Φ ji

(
0nx×nx Inx×nx

Inx×nx 0nx×nx

)
(17)

which leads to the same spectrum for both matrices Ω(Φi j)≡
Ω(Φ ji), for all (i, j) ∈ Q̄.

Denote the index p := i j, and consider the collection of
matrices F̄ = {Φp}m

p=1, where m is the cardinality of the
set Q̄. For each timestep n ∈ N, we define the set Σn(F̄ )
containing all possible products of degree n:

Σn(F̄ ) =

{
n−1
∏
i=0

Φpi : pi ∈ {1, . . . ,m}
}

. (18)

Theorem 1. If the augmented system (16) is exponentially
stabilizable, then the system (1) is exponentially stabilizable
under non-discerning control ut .

Proof. ⇒: Since ∥Xt∥ ≤ āc̄t∥X0∥, for any X0 there exists a
switching sequence σ∗ = (σ∗

t , σ̄
∗
t ) such that

∥X(t,X0,σ
∗)∥ ≤ āc̄t∥X0∥. (19)

Without loss of generality, let us assume t = 1 (σ∗
t = {i},

σ̄∗
t = { j}). Then we obtain

Xt =

(
Ai +BiG

†
i jCiAi −BiG

†
i jC jA j

B jG
†
i jCiAi A j −B jG

†
i jC jA j

)
X0 =(

Ai 0
0 A j

)
X0 +

(
BiG

†
i jCiAi −BiG

†
i jC jA j

B jG
†
i jC jA j −B jG

†
i jCiAi

)
X0. (20)

The state of the system (1) can be expressed as follows

xt = Aix0 +BiG
†
i j(CiAix0 −C jA j x̄0) = Aix0 +Biut . (21)

We obtain a control policy πt = (ut ,σ
∗
t ), under which

starting from any x0, the system (1) is stabilizable (with
a = ā∥x̄0∥,c = c̄):

∥x(t,x0,πt)∥ ≤ ∥X(t,X0,σ
∗)∥ ≤ āc̄t∥X0∥ ≤

āc̄t∥x0∥∥x̄0∥ ≤ act∥x0∥.



Moreover, the input ut is non-discerning, i.e. for (σ∗
t , σ̄

∗
t )

and ∀x0, x̄0 : y(t,xt ,ut ,σ
∗
t ) = ȳ(t, x̄t ,ut , σ̄

∗
t ), due to the design

of the system (16).

Remark 3. Generally speaking, the necessity does not
follow: there exist counterexamples when rank condition is
satisfied, the system (1) is stabilizable for any x0 under some
policy πt = (σt ,ut) and for some x̄0, σ̄t , but there does not
exist a switching sequence σ∗ =(σ∗

t , σ̄
∗
t ) that an autonomous

system built using the non-discerning control is stabilizable.
Example 2 in Section VI demonstrates the idea.

The following section addresses a practical approach for
determining the periodic stabilizing switching sequence σ∗,
based on the joint spectral subradius [22] for the augmented
system (16). If such a sequence is found, the design of
the non-discerning control follows, and the complete control
policy πt is ready to be applied to the system (1).

IV. NUMERICAL IMPLEMENTATION

A. Reduced set size determination

Recall that the spectral radius of a matrix Aσ is defined
as follows

ρ(Aσ ) = max{|λ1(Aσ )|, . . . , |λnx(Aσ )|}= lim
n→∞

∥An
σ∥

1
n . (22)

And the so-called joint spectral subradius [22] as

ρ̌(F ) = liminf
n→∞

{ρ(Aσ )
1/n : Aσ ∈ Σn(F )}, (23)

where F = {A1, . . . ,Aq}, Σn(F ) :=
{

n−1
∏
j=0

Ai j : i j ∈ Q
}
.

The joint spectral subradius calculation can be a compu-
tationally challenging task. Therefore, in order to optimize
the design, the set Σn(F ) can be efficiently reduced to the
set Sn⊂ Σn(F ) using the properties of the spectral radius.

For example, recall the known properties of the cyclic
repetition

ρ(A1 · · ·Aθ Aθ+1 · · ·Aτ)≡ ρ(Aθ+1 · · ·Aτ A1 · · ·Aθ ). (24)

And of the equivalency of matrix products

ρ(A1 · · ·Aθ )
τ > ρ(A1 · · ·Aθ ) if ρ(A1 · · ·Aθ )> 1, (25)

ρ(A1 · · ·Aθ )
τ < ρ(A1 · · ·Aθ ) if ρ(A1 · · ·Aθ )< 1. (26)

The number of unique combinations (due to the property
(24)) can be obtained using a classical result from combina-
torics based on the MacMahon Theorem.

Lemma 1. [Theorem 1 in [23]] The number of cyclically
different combinations of length n from a set of m characters
is

M(n,m) =
1
n ∑

d\n
md

φ

(n
d

)
, (27)

where φ is the Euler totient function. (φ(l) is the number
of the integers if {0, . . . , l − 1} which are relatively prime
to l. The notation d \n indicates (summation over) positive

divisors, that is, n = kd where k is an integer and d is a
positive integer.)

Furthermore (from [23]), due to (25)-(26) we have

N(n,m) = ∑
d\n

µ(d)M
(n

d
,m
)
, (28)

where µ is the Mobius function.
In addition to a known size reduction described above,

according to Remark 2, in our case the following is satisfied

ρ(Φi j)≡ ρ(Φ ji). (29)

This leads to the significant size reduction on top of (28),
for the case of a system under non-discerning control: the
cardinality of the set Sn can be calculated as follows

N̄(n,m) =
N(n,m)+ m(1+(−1)n)

4
2

. (30)

Given a number of timesteps n ∈ N and using all the
properties defined above, the following algorithm can be
designed to obtain a set Sn.

Algorithm 1: Set reduction

Build a mn × n matrix of indexes (denoted as Σ̄n) for all
combinations of Σn(F ), determine N̄(n,m) using equation
(30).
for i = 1 : N̄(n,m) do

Take a row from Σ̄n(i, :) (denoting it as pn, . . . , p1), and
extend it to the right as {pn, . . . , p1, pn, . . . , p1}.
1. Due to (29), we can delete its pair row {pn +
(−1)pn+1, . . . , p1 +(−1)p1+1} from the matrix Σ̄n.
2. Due to the (25)-(26), if the combination {pn, . . . , p1}
appears only twice in the extended sequence consecu-
tively, proceed to Step 3. If not, exclude the row.
3. Due to (24), the spectral radius of all consecutive
combinations of length n in {pn, . . . , p1, pn, . . . , p1} is
equal. Therefore, find and remove all the rows appear-
ing as a combination from the matrix Σ̄n, except for
{pn, . . . , p1} itself.

end for
4. At the end of the algorithm, the matrix of indexes Σ̄n
is efficiently reduced to the cardinality of the set Sn (i.e
to N̄ (n,m)).

B. Determination of stabilizability and control design

Recall the well-known result on the periodic stabilizability
of autonomous systems.

Lemma 2 (Lemma 4 in [6]). The system (16) is periodic
stabilizable if and only if there exists a sequence of matrices

A∗
n :=

n−1
∏
j=0

Φp j = Φpn−1 · · ·Φp0 which is Schur.

Then the goal is then to find (for the smallest n) An
∗

which is Schur for the augmented system (16). Using the
set reduction technique, the following branch-and-bound
algorithm for the calculation of ρ̌(F̄ ) and determination of
σ∗

n can be designed.



Algorithm 2: Determination of stabilizabilty of (16).

1. Let ρ̌(F̄ ) :=+∞ and n := 1.
while ρ̌(F̄ )> 1 and n ≤ nmax do

2. Determine the set of all combinations Σn(F̄ ).
3. Determine the set Sn ∈ Σn(F̄ ) using Algorithm 1.
4. Compute all spectral radii for Sn,
if ∃An ∈ Sn such that ρ(An)< 1 then

ρ̌(F̄ ) = ρ(An), A∗
n := An.

end if
n = n+1.

end while

If the algorithm does not find a stabilizing switching
sequence, we state that the augmented system (16) is not sta-

bilizable in nmax steps. If A∗
n =

n−1
∏

k=0
Φik jk = Φin−1 jn−1 · · ·Φi0 j0

was found, we can extract stabilizable switching signals
σ∗

n = {ik}n−1
k=0 and σ̄∗

n = { jk}n−1
k=0 and proceed with the design

of the non-discernible control un to complete the control
policy πn = (uk,σk)

n−1
k=0 . Applying the equation (6) for the

interval (0,n−1), for a given x0 we can pick any x̄0 for the
copy of the system, and we get the following:

u(k) = G†
ik jk

(
Cik Aik x(k)−C jk A jk x̄(k)

)
, ∀k = 0, . . . ,n−1.

(31)

The obtained control policy πn can be repeated periodically
until the stabilization of the state x is achieved.

V. APPLICATION

Consider a a window of measurements [t− t̄, t] of switched
system (1) controlled by the non-discerning control under
external observation.

y[t−t̄,t] = O[t−t̄,t]x0 +H[t−t̄,t]U[t−t̄,t] (32)

where U[t−t̄,t] and y[t−t̄,t],r are measured input and output
during a chosen time window, and

O[t−t̄,t] =

 Ci
CiAi
. . .

CiAt−1
i

 , H[t−t̄,t] =


0

CiBi
. . .

...
. . .

. . .
CiAt−2

i Bi · · · CiBi 0

 .

Let us apply the method of active path determination from
[24]. To exclude the state in the input-output monitor, the
vector w is considered, which satisfies the following

w⊤O[t−t̄,t] = 0. (33)

Then, the residual r[t−t̄,t] is introduced which can be
defined as follows:

r[t−t̄,t] = w⊤y[t−t̄,t]−w⊤H[t−t̄,t]U[t−t̄,t]. (34)

In order to deduce the active path from all the possible
options, all the residuals have to be checked. It is evident that
the residual r[t−t̄,t](i) will correspond to 0 for σt . However,
since y[t−t̄,t] ≡ ȳ[t−t̄,t] by definition of the non-discerning
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Fig. 1: Non-discerning control for Example 1, initialized
from x0 = (1 5)⊤, x̄0 = (6 0)⊤

control U[t−t̄,t], the residual r[t−t̄,t]( j) in the case of the
sequence σ̄t will also correspond to zero. Therefore, the
active mode cannot be determined uniquely using the active
path determination, which in turn implies that the state
cannot be determined uniquely.

VI. EXAMPLES

A. Example 1

Consider the switched system (1) with 2 modes as follows

A1 =

(
2 0
−1 0.9

)
, B1 =

(
2
0

)
, C1 =

(
1 0

)
,

A2 =

(
1.4 0.5
0 0.5

)
, B2 =

(
0
1

)
, C2 =

(
1 1

)
.

Since rank
([

C1A1 −C2A2 G12
])

= rank(G12) = 1, the
non-discerning control can be designed. We obtain a set F̄
of two matrices Φ12 and Φ21 as follows

Φ12 =

−2 0 2.8 2
−1 0.9 0 0
0 0 1.4 0.5
−2 0 1.4 1.5

 , Φ21 =

1.4 0.5 0 0
1.4 1.5 −2 0
2.8 2 −2 0
0 0 −1 0.9

 .

Let us apply Algorithm 2:
2) In case of n = 1, Σ1(F̄ ) = F̄ = {Φ12,Φ21};
3) We exclude one of the matrices due to the inverse
combination (i.e. ρ(Φ12) = ρ(Φ21)), and S1 = {Φ12};
4) We obtain ρ(Φ12) = 4.67, which forces us to increase n;
Repeating steps 2)-4) until n= 6, we do not succeed, the first
stable combination can be found only as ρ(Φ3

12Φ3
21) = 0.62,

which concludes that the system is periodic stabilizable.
Using the equation (31), we design the control policy which
stabilizes the state in ∼ 70 timesteps. (see Figure 1).

Let us now apply the active path determination for the case
of non-discerning control. Without loss of generality, choose
a short time window t̄ = 2, t = 60, which corresponds to a
mode sequence σ[t−t̄,t] = {1,1,1} (due to the Algorithm 2).
Using the matrices for both modes, let us design w(i) using
(33): as expected, at least two residuals corresponding to the
sequences σ[t−t̄,t] and σ̄[t−t̄,t] = {2,2,2} are zero, correspond-
ing to w(1) =

(
−6 1 1

)
and w(2) =

(
0.7 −1.9 1

)
.
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Fig. 2: Example 2. Counterexample for the necessity of
Theorem 1, initialized from x0 = (1 5)⊤, x̄0 = (6 0)⊤

B. Example 2. Counterexample for the Theorem 1

Consider the switched system as follows

A1 =

(
0 −0.8

0.8 1.1

)
, B1 =

(
0.4
0

)
, C1 =

(
1 0

)
,

A2 =

(
−0.1 0.5
0.5 0.5

)
, B2 =

(
0
0

)
, C2 =

(
1 0.5

)
.

The rank condition is satisfied, therefore, we can design
the augmented system (16). The search for the combination
concludes in not stabilizability (for nmax = 25).

However, looking at eigenvalues λ (Φi j) =
{1.1,0.78,−0.38,0} we see that only one subsystem
is unstable (corresponding to mode 1), and the second
one is stable, but not controllable (due to B2 =

(
0 0

)⊤).
As a result, choosing, for example, the switching signals
as σt = {2,2, . . . ,2} and σ̄t = {1,1, . . . ,1}, we obtain the
non-discerning control ut which stabilizes the system (1),
while the state of the x̄ goes to infinity (see Figure 2).

VII. CONCLUSION AND FUTURE WORK

The results presented in this paper introduce the concept
of non-discerning stabilizing control, the objective of which
is to keep the switched system in a non-distinguishable
state while bringing the state of the system to zero. The
conditions for the existence of such a control appeared to
be easily determined using a rank condition on a system.
The stabilizability condition was ensured, based on the
augmented system, assembled using the two modes under
non-discernible control. The design procedure presented in
Section IV uses the fact that for the stabilizability of the
augmented system, it is enough to find a joint spectral
subradius, less than one, while reducing the computational
cost of such a process by excluding most combinations.
The algorithm is constructive and ready to be applied to
the system, for example, under a confidentiality attack (as
demonstrated in Section V). The academic example validates
the approach by proving the inability of the attacker to
determine the mode and state uniquely.

Future works include consideration of disturbances and
measurement noise, which significantly changes the problem
statement and requires an updated design and rigorous anal-
ysis of the problem. Extension of the result to other types of
systems (nonlinear, LTV, etc.) is also a relevant direction.
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