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Abstract
With the rapid development of charging infrastructure for Electric
Vehicles, the risks of cyber-physical attacks, including energy theft
are growing. The attack detection results of energy theft are usually
validated on real open access data of charging sessions, however,
the attacks themselves are artificially introduced. To address this
issue, this work presents a three-week experiment on a real testbed
including the production and consumption of energy with realistic
energy theft attacks occurring in the system. The energy setup
emulates a charging bike station where users can charge bikes
at different levels of state of charge and at different durations of
charging sessions. The attacker is one of the users who steals energy
from the system for its own bike and can override the reported
consumption of power. We propose a method for detecting such
attacks based on the total production/consumption power balance.
The full dataset of the three-week experiment is published with
this work for reproducibility purposes.
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1 Introduction
Research on the cybersecurity of Electric Vehicles (EV) charging
has been especially extensive over the last decade. Related surveys
deal with the security of charging protocols and the threats the
technology faces [8, 11–13]. The considered threats include the
problem of energy theft or unauthorized charging. It can be consid-
ered as the threat that will probably grow and become a challenge
with the widespread adoption of Electric Vehicles [3, 9].

Most of areas are currently covered by public, residential, or semi-
public charging stations, powered by a public electric grid (power
plants). However, the trend of installation of off-grid charging sta-
tions is going upward, due to some clear advantages: accessibility
in remote locations and clean energy power sources. In addition,
due to the high energy demand of new electric vehicles [4, 25],
burdens on the public grid can occur, which suggest that stations
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should include off-grid capacities. For instance, the so-called FEVER
initiative [17] was introduced to decouple EV charging demand
from the electricity grid in the UK, also facilitating a more rapid
deployment of charging infrastructure. Additionally, for areas with
poor grid connectivity (for example CHARGE Solar-Powered Sta-
tions in South Africa1), off-grid capabilities become mandatory. An
extensive review on off-grid and hybrid charging stations can be
found in [24], concluding in an overwhelming popularity of hy-
brid systems over off-grid ones, with predominant energy sources
combining PV and batteries.

There are key differences between energy theft from charging
stations and the public grid. The most common practice of stealing
energy from the public grid is a physical bypass, such as illegal
power line tapping [18]. In such a case, only one user is supposed to
consume energy and would be easily spotted as an attacker in case
of inconsistencies in the measured consumption. On charging sta-
tion, various users are involved and the technologies involved can
have flaws for example in the radio protocols [6] or authentication
mechanisms [2]. Additionally, the hardware can be physically at-
tacked by modifying the involved sensors or measurement systems.
If an attack succeeds on a charging station, it can be replicated over
all stations involving the same setup. For these reasons, we focus
on the specific case of an attacker stealing energy from a charging
station, especially since such attacks can be extended to a public
grid and cause major issues for the infrastructure [1].

Despite the plethora of openly available data sets on electric
transport charging data (Boulder city2, Palo Alto city3, Nether-
lands4, Dundee city, Perth & Kinross Council, etc.), there is no
dataset including real attacks during normal operations of a charg-
ing station. Researchers are forced to inject anomalies into existing
experimental data artificially [5, 6, 16] which can mislead the detec-
tion results if the injected events contain too obvious differences
with normal events. Using artificial intelligence methods, the detec-
tion of anomalies can give over estimated results, which justify to
perform attacks during the real running of the system to guarantee
that the data that is similarly recorded for legitimate and malicious
events.

In this paper, we design a testbed representing a bike charging
station composed of real solar panels, batteries and grid connec-
tivity. We run the testbed and consume energy corresponding to
predetermined arrival of users with their bikes. Bikes are simulated
with charging profiles and operated with a programmable device

1https://charge.co.za/
2https://open-data.bouldercolorado.gov/datasets
3https://data.cityofpaloalto.org/dataviews/257812/electric-vehicle-charging-station-
usage-july-2011-dec-2020/
4https://platform.elaad.io/download-data/
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consuming the energy from the system. During a one week run-
ning of the system, an attacker charges sporadically his bike by
consuming energy and removing the reported consumption from
the system. The attacker model is similar to the one introduced
in [7]: the attacker can corrupt by physical means or remotely the
control system and modify one of the sensor values. We run two
experiments: during one week the attacker charge his bike with
high levels of current, and in a second one, the levels are lower. For
both experiments, the solar panels, the batteries are involved, and
eventually the grid if the state of charge of batteries becomes insuf-
ficient. We introduce a detection algorithm based on the correlation
of the values of the system in order to estimate the intervals of time
where an attack occurs. Our results show that about 78.92% (week
2) and 65.53% (week 3) of stolen energy is detected in average with
almost no false positives reported. Additionally, we released our
dataset5 containing all measured values of our testbed for further
usage.

The outline of the paper is as follows. Section 2 provides related
works about energy theft detection and security of electric charging.
Section 3 is describing the scenario that is simulated on our testbed,
and the model of attack. Section 4 gives the detection performance
of the proposed detectio algorithm. Finally, Section 5 concludes the
paper and gives future directions of the project.

2 State of the art
The problem of energy theft has been addressed in the literature
mostly in the context of public power grids. In [21], the issue of
stealthy energy fraud in power grids due to the increase in the use of
corruptible smart meters has been investigated. The authors provide
two data mining techniques to identify energy theft. A smart meter
testbed in the University of Illinois at Urbana-Champaign was used
as an experimental validation for representing the residential area
power grid. Realistic load profiles based on simulated residents
were generated for the experiment. In [15], the authors proposed
a method of a consumption pattern-based energy theft detector,
which compares the total consumption measured by transformer
meters to the total usage reported by smart meters. Authors trained
an SVM on a public anonymized dataset of 5000 real customers.
Later, in [14], the same problem was addressed with a CNN-LSTM-
based deep learning technique. The method was evaluated with
the real data of 9655 users, provided by State Grid Corporation of
China. In [20], the coordinated pricing and energy theft attack in the
Smart Home Cyber-Physical System was considered. The method
of partially observable Markov decision process was used to select
non-compromised households and to fix or disregard information
from the corrupted ones. The validation consisted of a simulation,
including the Smart Home model. In [23] feature engineering and
machine learning algorithm was proposed, with a validation on
data of more than 4000 households data. With a similar goal to these
works, we present an energy theft attack on a real energy-based
testbed, where the target of the attack is a smaller-scale local grid
rather than a public one.

Despite the recent advances of the EV and other electric trans-
port infrastructure, there appears to be only a few results directly
addressing the issue of energy theft in the literature. For instance,

5https://doi.org/10.5281/zenodo.15297511
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Figure 1: Testbed

in [5] the price false data injection on a hybrid charging station
using PV was considered. A combination of a statistical Greedy
Gaussian Segmentation (GGS) for anomaly detection with kNN for
its source identification is introduced. For the algorithm validation
experimental data of real EV charging with 7994 records from the
UCLA campus was used and the attack was artificially injected.
In [6] the experimental datasets from multiple open sources were
artificially extended with anomalies related to attacks on energy
consumption values and with errors, which leads to energy theft
among other consequences. A collaborative Anomaly Detection
System was introduced based on local retraining of ML models
based on collectively available data. The results presented in this
paper aim to detect energy theft attacks on a charging station based
on measured consumption readings like in [6], but using a static
algorithm rather than complex machine learning methods.

In [7], the so-called overcharging covert attack on an Electric
Vehicle Supply Equipment is introduced: the physically tempered
increase in power consumption by the battery of an EV is canceled
by an FDI (False Data Injection) attack measurement. The detection
strategy includes a dynamical model of the battery, based on which
two detection algorithms are provided: a static one, which compares
the measured battery voltage with the predetermined upper limit;
and the dynamical which compares a measured battery voltage
with an expected one, based on the model from the Fault Detection
and Identification techniques. The results are then compared and
validated on a charging simulation with artificially injected noise.
The results are later extended in [22] with new adversarial threat
models. In our work, similarly to [7], we simulate attacks using
False Data Injection, but we inject attacks in real-time to get more
realistic detection results and to better represent the impact.

3 Testbed and attack scenario
This section presents a well-monitored energy-based testbed for
hosting scenarios related to cybersecurity and energy management.
The testbed is used to deploy a scenario where an attacker is stealing
energy from a charging station for bikes. We first describe the
testbed and then discuss the attacker’s model and how we simulate
the charging station and the attacks in the testbed.

3.1 Testbed description
As shown in Figure 1, the testbed is hosted in a room where an
inverter is the central link with the grid of the campus, the photo-
voltaic panels, Li-Ion rechargeable batteries and a programmable
load. The inverter (IMEON 3.6) distributes the energy as follows:
all the energy generated by the PV panel goes directly through the
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Figure 2: Data collection

Smart Inverter, which decides the destination for the storage or
further transmission. Based on the mode of operation, the energy
from PV can be either stored in the batteries, or transferred directly
to the campus grid. By design, the Inverter IMEON allows switching
between four modes of operation: Smart Grid (priority on PV and
batteries power utilization over grid), Back-Up (priority on the full
charge of the batteries from PV and grid), On-Grid (the battery is
not utilized), and Off-Grid (island mode with no public grid uti-
lized). For the performed experiment described later in Section 4,
we use a Smart Grid mode to simulate a hybrid system i.e. that
order the consumption first from the PV, then from the batteries
and finally from the campus grid. However, during the night when
the renewable energy is not available, we switch to Back-Up mode
to charge the batteries from the grid, if necessary. The batteries that
store the energy collected by the PV panels are 5 Li-Ion Pylontech
US2000C batteries, located in the thermal chamber and connected
in parallel with a total nominal capacity of 12 kWh. The H&H ACL
Series Programmable load is connected to the local AC grid and
can consume energy from all sources, through the IMEON inverter.

Figure 2 shows the network topology of the testbed. The Smart
Room network (10.25.1.x) connects the IMEON inverter to an au-
tomata and can be interrogated from a secondary local network
(172.17.8.x) through a raspberry Pi #1. The raspberry Pi #1 plays
the role of a bridge between the two networks and offers an HTTP
API to read the register values of the IMEON using the modbus pro-
tocol. Such a setup is representative of industrial control systems
where low level networks transport modbus messages, without
any security involved, and where high level networks contain web
applications for supervision purpose.

The Raspberry Pi #2 hosts the open-source OpenHAB software
for tracking in real time all energy values and storing them in a
database. OpenHAB also allows to write orders into the inverter,
such as the changing of operation mode. In particular, the values
collected for our scenario can be expressed in four groups:

I : {𝑃PV, 𝐼PV,𝑉PV}, II : {𝐼 chbatt, 𝐼
disc
batt ,𝑉batt, 𝑆𝑜𝐶},

III : {𝑃grid, 𝐼grid,𝑉grid}, IV : 𝑃load .

• the first group represents simultaneous measurements of the
power production, current, and voltage of the PV panel;
• the second group consists of the measurements from batter-
ies (charging current, discharging current, voltage, and state
of charge);
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Figure 3: Daily charging profile (3 bikes)

• the third group provides values from the local AC grid: the
power readings go to negative when the system produces
an overhead of energy and sends it to the public grid, else it
is positive;
• the final group is dedicated to the power consumption read-
ings of the electric load, which in our case is assumed to be
attacked as we will explain in the next section.

3.2 Scenario: bike charging station
We chose to deploy real attacks in a scenario where users charge
their bike at a charging station that is powered by our three sources.
The scenario has been chosen to obtain the more realistic data given
the setup in place.
• The station can charge up to 3 bikes at a time;
• The primary source of charging is the energy coming from
the photovoltaic panels;
• The secondary source of charging is the Li-Ion batteries;
• The batteries are recharged from the public grid at night if
necessary.

In order for the experiment to be as realistic as possible when a
bike is charging we used charging profiles from the project WeBike
of University of Waterloo [10]. During this project, the 33 electric
bikes equipped with various sensors were distributed to the faculty
and all the readings were recorded in a dataset6. In particular, we
extracted the bike charging profiles of June and May 2016 and
adapted them to command the programmable load of our testbed.
In particular, we performed the following operations:
• Fixing the time steps to 60 seconds;
• Eliminating zeros or other obvious errors;
• Scaling the data to fit the Smart Room power consumption
limit (3000 W).

In order to represent the load of a daily venue of three bikes,
we combined the profiles by scheduling the arrival of bikes 1 to 3,
resulting in the total consumption profile of Figure 3. The power
consumption profile of Figure 3 represents a three bike charging
session, with only one bike charging at first, following by a second
after a delay of about 50 min, and the third one following with a
delay about 65 min. Each bike is represented by a standard CC-
CV (Constant Current/Constant Voltage) protocol, which leads to
asynchronous drops in maximum power (as can be observed around
166 and 270 minutes).

6https://borealisdata.ca/dataset.xhtml?persistentId=doi:10.5683/SP2/7OAETS
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Figure 4: Attack Implementation
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Figure 5: Attack levels

The regular operation of the charging station (i.e. without at-
tacks) includes 5 days of charging sessions, where energy is pro-
vided by PV panels and batteries. Each day, new profiles of either 2
or 3 bikes were charging with scheduled arrival delays.

3.3 Attack model
The energy theft attack was designed as a combination of a physical
and integrity (FDI) attack. The idea is that the adversary pulls the
electricity for the bike when he is not allowed to (such cases are
prominent in practice, mostly in China [26], and sometimes lead
to fire accidents). Furthermore, in order to avoid being discovered,
our attack model assumes that the attacker has the ability to gain
access to the API bridge (due to the software vulnerability) and to
override the energy consumption that is reported from the inverter.
As a consequence, such attacker has strong power over the system
because we suppose that he is able to perform FDI attacks, similarly
to [7], and subtract its power consumption in real time, according
to the power of his bike. As a summary, we perform in the testbed
the following operations when the attacker bike is charging:
• (Physical): Increase the requested power by sending a cor-
rupted profile that adds 𝑎load to the programmable load;
• (FDI): Subtract the increased power 𝑎load every data reading
time step in the API bridge (which emulates a cyber attack
similar in the principle to the StuxNet attack [19]).

As represented in Figure 4, the control signal sent to the pro-
grammable load, denoted by 𝑃𝑎

𝑙𝑜𝑎𝑑
is then applied as a consumption

and measured by the IMEON, including the measurement noise
𝑣 (𝑡). On the other side, a new event 𝑃𝑚load is sent to the API bridge
with a subtracted FDI attack 𝑎load.
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Figure 6: Attack profile, levels 1-3
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Figure 7: Attack profile, levels 1,2

In order to introduce diversity in attack’s behaviors in our sce-
nario, we defined three different levels of power for the attacker.
Three stages of Constant Current/Constant Voltage (CC-CV) charg-
ing are represented in Figure 5: the top part of the figure shows a
current profile of a bike charging session. The bottom part shows
the state of charge of the bike’s battery . The most noticeable part of
charging (defined as attack of level 3) corresponds to the maximum
power consumption, which corresponds to a charging up to ∼90
percent of the charging capabilities. The next segment, from the
peak of the current profile to 1/3 of the maximum defines the attack
of level 2: it corresponds to charging from ∼90 to ∼96 percent of the
battery. Finally, the last segment with the least power consumption
is attributed to the attack of level 1 (from ∼96 to 100 %). By mixing
these levels of attacks and varying their duration, we introduce
diversity in the difficulty of detection of these attacks.

Finally, we ran two weeks of experiments containing attack
sessions:
• week 2: attacks that are triggered are full uninterrupted
charging from level 3 to 1;
• week 3: attacks that are triggered contain only attacks of
level 2 or 1.

Figure 6 shows the difference between a regular energy con-
sumption (without any attack in blue: combined_profile_nominal)
and the same consumption with an additional attack during a sec-
ond week: the attacker consumes more energy during 5 hours, an
additional 500 W at the beginning and almost 0 W at the end. For
week 3, we show in Figure 7 the same comparison. Depending on
the chosen level for the attack (1 or 2) and the time instance in this
level, the difference can be more or less noticeable. For example,
at 11:30, an attack of level 1 occurs until 14:00 with a low addi-
tional consumption. At 14:00 a new attack of level 2 is triggered but
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Algorithm 1 Attack detection
Input: 𝑃𝑒 (1), . . . , 𝑃𝑒 (𝑛)
for 𝑖 = 1, . . . , 𝑛 do

if |𝑃𝑒 (𝑖 ) | > 𝑃max
𝑒 then

𝛿 ← 𝛿 + 1
else

𝛿 ← 0
end if
if 𝛿 > 𝛿 then

for 𝑗 = 0, . . . , 𝛿 do
attack(𝑖 − 𝑗 ) ← true

end for
else

attack(𝑖 ) ← false
end if

end for
Output: attack(1), . . . , attack(𝑛)

stopped at 15:20. This example shows that an accurate detection
can be more difficult in some cases when the attacker is stealing
less energy.

4 Detection
In this section, we intend to evaluate our ability to detect attacks
of weeks 2 and 3. We designed a detection algorithm based the
measurement of error between the energy that is consumed and
the energy that is produced. If the error is higher than a threshold,
we suspect that an attack is occurring. Such algorithm is easy to
setup and can run smoothly in the system. After presenting the
algorithm, we evaluate the true/false positive/negative on the two
weeks of experiments presented in the previous section.

4.1 Detection principle
We designed a detection algorithm that compares the combined
consumption reported in openHAB and the combined energy pro-
duction that we measure. The combined production 𝑃supply can be
expressed as follows:

𝑃supply = 𝑃PV + 𝐼discbatt𝑉batt + 𝑃grid . (1)

Whilst, the total consumption by the equipments of the system
𝑃cons can be expressed as follows:

𝑃cons = 𝑃𝑚load + 𝐼
ch
batt𝑉batt . (2)

The error 𝑃𝑒 is introduced to accommodate for all the unmea-
sured consumption (such as consumption of energy by IMEON),
disturbances (such as DC to AC conversion, PV measurement error),
and measurement noises as follows:

𝑃𝑒 = 𝑃supply − 𝑃cons . (3)

Based on the measurement of 𝑃𝑒 , we can infer that an attack
is occurring if 𝑃𝑒 is too high. Thus, we designed a detection Al-
gorithm 1 that iterates over the time and identifies if an attack is
occurring at each time step 𝑖 . In Algorithm 1
• 𝑃𝑒 (𝑖) = 𝑃PV (𝑖) + 𝐼discbatt (𝑖)𝑉batt (𝑖) + 𝑃grid (𝑖)
−𝑃𝑚load (𝑖) − 𝐼

ch
batt (𝑖)𝑉batt (𝑖);

• 𝑃max
𝑒 is the error threshold to be tuned according to the
observed error of the first week of experiments;
• 𝛿 is the number of consecutive readings considered as
an attack;
• 𝛿 is a threshold that avoids false positives due to peaks of
errors not linked to an attack;

Table 1: Energy consumption Experiment (Week 1)

Week 1 (kWh) Total PV + error Battery Grid SoC (%)
Day 1 5.08 3.65 1.43 0 96
Day 2 5.13 0.63 4.5 0 37
Day 3 5.77 0.86 4.91 0 59
Day 4 4.18 0.74 3.44 0 71
Day 5 8.04 5.13 2.91 0 82
AVG 5.64 2.2 3.4 0 69

1 2 3 4 5

Days

-100
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300
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Figure 8: Error distribution, week 1

• attack(𝑖) is the final output of detection for each unit 𝑖 of
time.

4.2 Week 1 results: nominal operations
During week 1, the regular profiles (such as the ones of Figure 3)
were sent to the programmable load to consume a power from the
testbed, without any attack. Table 1 gives an overview of the energy
consumption of the different parts of the testbed and the remaining
state of charge (SoC) of batteries after each session. It can be seen
from Table 1 that most of the consumed energy was provided by the
batteries, due to the mostly cloudy weather (October-November),
while PV was able to cover only about a third of the charging
demand of 2-3 electric bikes. Nevertheless, for example in day 1,
because of the sun, the SoC is high (96%) at the end of day. Figure 8
shows the distribution of 𝑃𝑒 . We observe a persistent level of extra
production of 160 W on average, which can be mostly attributed to
the power consumption of the IMEON, which is not recorded by the
supervision system and is considered as lost energy. Additionally, a
significant number (111 out of 1721) of faulty error values are visible
as outliers of the boxplot, presented in Figure 8. For example, during
the days where the sun was available (day 1 and 5) the error outliers
jump as high as 1200 and even produce a considerable amount of
negative values. These errors can be explained by a non-optimal
measurement of the PV power production, where the simultaneous
power is measured once every 60 seconds instead of an average
over the last minute. Such error can significantly impact the attack
detection algorithm and can produce false positives.

Based on the observed error distribution of week 1, we fixed the
two parameters of our detection algorithm: 𝑃max

𝑒 = 320 [W] and
𝛿 = 3 in order to limit false positives in the next experiments.

4.3 Week 2 results: level 3 attacks
Week 2 includes attacks of levels 3 to 1. We report in Table 2 the
total energy consumption of the experiment for each day i.e. the
energy consumed by users and the attacker. For example, on day 1,
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Table 2: Energy consumption and attack detection (Week 2)

Consumption (kWh) Detection (%) Attack
Week 2 Total Users Attack TPR FPR Accuracy F1 score Precision Det.(kWh) Det.(%) Und.(kWh) Und.(%)
Day 1 5.93 4.56 1.37 57.5 0 60.33 73.02 100 1.21 87.99 0.16 12.02
Day 2 5.12 3.75 1.37 47.33 0 53.17 64.25 100 1.06 77.74 0.31 22.26
Day 3 4.57 3.2 1.37 55.16 0 58.28 71.1 100 1.16 84.5 0.21 15.5
Day 4 4.75 3.38 1.37 43.42 0 47 60.55 100 1 72.8 0.37 27.2
Day 5 5.8 4.43 1.31 42.44 0 48.34 59.59 100 0.94 71.57 0.37 28.43
AVG 5.23 3.86 1.36 49.17 0 53.42 65.7 100 1.07 78.92 0.28 21.08

Table 3: Energy consumption and attack detection (Week 3)

Consumption (kWh) Detection (%) Attack
Week 3 Total Users Attack TPR FPR Accuracy F1 score Precision Det.(kWh) Det.(%) Und.(kWh) Und.(%)
Day 1 7.51 6.32 1.19 40 0 56.32 57.14 100 0.86 72.46 0.33 27.54
Day 2 6.28 5.19 1.08 30.68 0 46.65 46.95 100 0.67 61.63 0.42 38.37
Day 3 5.82 4.78 1.04 41.14 0 62.38 58.3 100 0.74 70.87 0.3 29.13
Day 4 5.11 4.42 0.69 16.49 0 32.18 28.31 100 0.31 44.12 0.39 55.88
Day 5 4.94 3.76 1.18 43.13 1.55 57.61 60.04 98.74 0.93 78.56 0.25 21.44
AVG 5.93 4.9 1.04 34.29 0.31 51.03 50.15 99.748 0.7 65.53 0.34 34.47

the attacker consumed 5.93 − 4.56 = 1.37 Kwh. Then, we reported
the detection performances: when we detect an attack at time i (TP:
True Positive), when we do not detect an attack (FN: False Nega-
tive). To evaluate the performances, we computes the rates: TPR
(True Positive Rate) = 100%·TP/(TP+FN), FPR (False Positive Rate)
= 100%·FP/(FP+TN), Accuracy = 100%·(TP+TN)/(TP+TN+FP+FN),
Precision = 100%·TP/(TP+FP), and F1 = 2·Precision/(Precision+TPR).
We observe that, in average, 49.17% of all attacks have been detected
and that no false positive is reported. This is due to the choice of
the threshold 𝑃max

𝑒 (see Figure 9). The associated quantity of en-
ergy that is reported as stolen is 1.07 Kwh i.e. 78.92% of the total
consumed energy.

4.4 Week 3 results: level 1-2 attacks
The third week of experiments is reported in Table 3, where the
overall detection drops to 34.29% (65.53% of stolen energy detected).
This results show that the choice of low power attacks have a direct
impact on the detection rate. Again, this detection ratio could be
considered as low but it guarantees almost negligible FPR of 0.31%.

4.5 ROC curves
Figure 9 shows the ROC curves when the 𝑃max

𝑒 varies, and the Fig-
ure 10 compares the same curves with different 𝛿 . ROC curves show
that a higher detection rate implies a high ratio of false positive. For
example, for week 3, detecting more than 70% of attacks would lead
to 70% of false positives. This highlight the difficulty of the problem:
at some point, the attacker is non distinguishable from errors or
small variations due to the measurement components. Figure 10
show that when targeting low FPR (< 2%), values of 𝛿 > 0 gives
better results. It can be explained by the fact that picks of error are
not misleading the detection algorithm.

5 Conclusion and Future works
This paper presented a testbed for simulating a charging bike sta-
tion where an attacker steals energy from the system. The strong
hypothesis about the attacker capabilities is that he can control the
reported power value in the system to cancel the power he steals
from the system. We show how an algorithm can supervise and

Figure 9: RoC for 𝑃𝑒𝑚𝑎𝑥 = 0, . . . , 1000, 𝛿 = 3, weeks 2,3
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Figure 10: RoC for 𝛿 = 0, . . . , 3, and 𝑃𝑒𝑚𝑎𝑥 = 0, . . . , 1000, weeks
2,3 (zoomed in up until 𝐹𝑃𝑅 = 10.)

detect such attacks with decent detection results preventing energy
theft attacks. The algorithm obtains acceptable results even when
intermittent energy sources are involved, such as solar panels.

One of the future directions of thework is the improvement of the
detection algorithm, with more extensive analysis of collected data.
We also plan to extend this work with more complex scenarios,
for example random decisions of the mode of the inverter, for
instance, if an operator decides to stop the usage of batteries for
other purposes. Another perspective of this work is to simulate
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new types of attackers with other objectives such as preventing
regular user to charge their vehicle.
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